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! Approxlmtions to the Cumulative Distribution Function of
| : The Magnitude-Squared Coherence Estimate

Introduction®

‘ The cumulative distribution function of the estimate of magnitude-squared
coherence, obtained by averaging over N statistically independent pieces of
Gaussian data, is available in reference 1 as a sum of N-1 hypergeometric functions.
Direct evaluation of this quantity has recently been simplified in reference 2;
however, it is still a tedious and time-consuming calculation for large N and suffers
from overflow and underflow unless special care is taken in programming. Fur-
thermore, no simple result for obtaining confidence limits is available.

.
———— -

In this report, we investigate the suggestion of Fisher (reference 3) that the

nonlinearity arc tanh (VX" ) converts the magnitude-squared coherence estimate to a

near-Gaussian random variable. In particular, we present simple approximations

for the mean and variance of this nonlinearly distorted magnitude-squared

coherence estimate and fit a Gaussian cumulative distribution function over a wide

range of: N, the number of pieces averaged in the magnitude-squared coherence

estimate; C, the true magnitude-squared coherence; and P, the values of the

' cumulative distribution function. Inversion of the Gaussian cumulative distribution

; function affords a simple way of getting confidence limits for specified probabilities
of threshold crossings. .

Since the arc tanh (VX ) nonlinear distortion takes no account of the known

number, N, of pieces entering the magnitude-squared coherence estimate, an im-

] proved nonlinear distortion that utilizes this information is presented; it converts

, g the magnitude-squared coherence estimates to more nearly a Gaussian random
1
i
i
!

variable over a wider range of parameters N, C, and P. Evaluation of confidence
limits requires the inversion of this nonlinearity; analytic inversion is not possible,
but a numerical procedure converges rapidly.

"

Investigation of Arc tanh (VX ) Nonlinearity

Moments

The probability density function of the magnitude-squared coherence estimate,
, as given in reference i,is

- .

- B e ———— - .

px) = (N-1) -ONU-0N2 £ 04 N; 1; Cx)for0<x<iandN32, (1)
(1-Cx)2N-1

where N is the number of pieces averaged; C is the true magnitude-squared
coherence; and F is a Gaussian hypergeometric function.

.l Mo

* Portions of this work, which were done jointly with G. C. Carter (NUSC), are being ﬁ
prepared for journal publication.
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The nonlinearly distorted version of random variable C,(nhich we are interested
in, is ‘
1 1 +VE
D =arctanh(V0) = < In ____.) .
2" \1-V¢ 7))
H _ “
If the nonlinear operation in (2) results in a Gaussian random variable for D, then
we will be interested in the mean and variance of D. This problem is considered i
analytically in appendix A; the only closed-form results that we can obtain are listed '
0 below. Let the m-th moment of D be denoted by _
1
Ha(N,C) = D™ = [ dx[arctanh (WK )1™pi(x) , ®
()}
5 where the overbar denotes a statistical average. Then for C = 0, the mean of D is
u(N,0) = yn [(N-1) ~ _vn/2 as N ;
2 [(N-1/2) VN-T.23 Q)
1 the m-th moment is
i (1 + m/2) .
: (N,0) v———————  asN-+0;
| o (N-1)"2 )
jl and the variance is
‘ 1-n/4 -
OZ(N,O) = nz(N,O) - uf (N,0) "‘—N-:r as N—o | ©
This last expression is the asymptotic variance of D for C = 0.
: In order to deduce the fundamental behavior of the mean and variance of D for
| C # 0, it was necessary to evaluate (3) numerically; this problem is considered in
' I appendix B. The main results of the numerical investigation are listed below. We
find mean
: #(N,C)=arctanh (VC+B)forC>0, ()
]
i where
[
[ —3 -—l-—cz— i ] ’
s 2(N-1) ®)
f'
; and variance
1
N,C) & .
o¥N,C) AN-D) forC>0 ®)
The imprecise qualifier C > 0 reflects the fact that the probabilistic behavior of ¢
and D is distinctly different for C =0 versus C > 0; for example, compare (6) and
(9). The precise region where (7), (8), and (9) are valid will become clear in later
2
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plots. The result (9) is a slight modification of Fisher that better fits the calculated
values of variance in appendix B and the slope of the cumulative distribution
function plots. Its independence of true magnitude-squared coherence value C is
striking and convenient.

Probabilistic Statements

If D is nearly a Gaussian random variable with mean u,(N,C) and variance
o%(N,C), then the cumulative distribution function of D, i.e., the probability that D
is less than some threshold T, is given by the approximation

T T -
Pz(T)!Prob{D(T}ﬁf \,—;; 5 SXP (‘ "‘Eﬁ(xz,,))= °(:r?w), (10)

where

y
oy = [ ;—iﬁ exp (u?/2) an

is the cumulative distribution function for a zero-mean unit-variance Gaussian
random variable. A plot of (10) on normal probability paper, with T as the linear
abscissa, yields a straight line with abscissa-intercept u; and slope 1/0, since the

nonlinear transformation to plot ordinates in this case is the inverse function® ®( ).

The exact cumulative distribution function of D is given by
P,(T) = Prob {D< T} = Prob {arc tanh VE < T}
= Prob { C < tanh¥T)} = P,(tanh¥XT)), (12)

where we employed (1) and (2) and defined P, as the cumulative distribution func-
tion of C:

- A
P,(A) = Prob{C<A} = [ dxpx). (13)
0

Thus, we can relate cumulative distribution function P, to the known cumulative
distribution function P, given in reference 1. Programs for the exact evaluation of
(13) and (12) are given in appendices C and D, respectively.

The availability of approximation (10) for the cumulative distribution function of
D enables us to give a simple approximation to the cumulative distribution function
P, of &; namely

P,(A) = Prob {é < A} = Prob {D < arc tanh (VA) }

(]

= P, (arc tanh WVA)Eo <§r_c_ta_nM_—_El), (14

where y; and o are given by (7), (8), and (9).

*A superscript 1 (1) will be used to denote the inverse of a function.
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Furthermore, we can now solve the inverse problem of determining a threshold A
for specified values of cumulative distribution function P, and for given parameter
values C and N. From (14), we have

A % tanh? (4, + 0 OYP))) , asy
where y, and o are in (7), (8), and (9). Simplification qf (15) results in
Ax (" +8 )2,
1+af (16)
where
1- Cz /2 .
@= [C+ 2(N-l)] ' a7
®'P)
= tanh | —=% |-
oo [vzm—n] a®)

A program for the evaluation of (16), (17), and (18) is given in appendix E.
Plots

Before embarking on the plots of exact cumulative distribution function P, of
distorted random variable D, as given by (12), we plot the exact cumulative
distribution function P, in (13) of the original random variable &, as given by
reference 1, Plots on normal probability paper for N = 8, 16, 32, 64, 128 are given
in figures 1-5*, respectively. In these figures, each dotted straight line corresponds
to a Gaussian random variable with mean and variance as derived for magnitude-
squared coherence estimate C in reference 4, page 20. The discrepancy with the
exact cumulative distribution function (in solid lines) indicates that & is not well-
approximated by a Gaussian random variable, especially for the small and large
values of C and the extreme values of probability near .01 and .99.

Plots of the exact cumulative distribution function P, of D, given by (12), are
presented in figures 6-10 for N = 8, 16, 32, 64, 128. Dotted straight lines
corresponding to a Gaussian random variable satisfying (7)-(10) have been drawn
for every C and N value being considered; however, they have been overdrawn by
the exact cumulative distribution function (12) in some cases and are not visible.
The agreement between exact and Gaussian cumulative distribution functions is
extremely good except for very low values of C and N. Notice also that the curves
are approximately parallel straight lines over a wide range and can, therefore, be
interpolated more easily. Thus, approximate probabilistic relation (10) and its
inverse (16) are very useful and accurate for a wide range of C and N, encompassing
most of the useful values of these parameters,

* All figures are grouped at the end of the main text.




v e s

B A ————— s " B - st ) e AN

-

IR 2"

L

An Improved Nonlinear Transformation
Desired Transformation

The arc tanh (VX ) nonlinear transformation in (2) is independent of the known
quantity N, the number of pieces used in getting magnitude-squared coherence
estimate C. An improved transformation that utilizes N should, therefore, be
possible and should be investigated to see if a more-nearly Gaussian random
variable can result.

The method to determine this nonlinear transformation is as follows: suppose a
random variable with cumulative distribution function P,(X) is given, and a
nonlinear monotonically increasing transformation, :

y =g(x), 19

that will result in a specified cumulative distribution function Py(Y),is desired. We
have

P(X) = Prob{x <X} = Prob{g(x) < g(X)}
= Prob{y < g(X)} = P,(g(X)) . (20)
Therefore, inverting this equation, the desired nonlinearity is
g(x) = P} (P,(x) . 1

Thus, we need to know the inverse of the desired cumulative distribution function
P
2-

In particular, if y is Gaussian with mean u, and variance o2, then

Py(Y) = ¢(!'_"_>.
]

P; (t) = My + OQI(t) ) (22)
yielding
B(x) = p, + o®}(P,(x)) . 23

This nonlinear transformation (23) will result in a Gaussian random variable with
mean u,and o2. However, the quantities y,and P, depend on true coherence C as
well as N; see (7) and (1). Since C is unknown (we are using € to estimate Q0), (23)is
useless unless it turns out that (23) is substantially independent of C; it can, of
course, depend on N. To ascertain this possibility, we have plotted, in figures 11,
12, and 13, the nonlinear distortion (23) for N = 8, 16, and 32, respectively; the
program is given in appendix F. Within each figure corresponding to a fixed value
of N, the five distortions (23) for C = .01, .05, .1, .5, and .99 have been plotted as

TR 6327
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solid lines; in addition, the arc tanh (\/x ) nonlinearity is superimposed in dotted
lines. Furthermore, (23) has only been plotted in the range of probabilities {.01, .99]
for P, since this is the range we are concentrating on.

The ideal situation would occur if, within each figure, the same identical
nonlinear function occurred for all five cases of C = .01, .05, .1, .5, and .99; of
course, the function can change with N. Although this fortuitous situation does not
occur precisely, inspection of each of the five cases within each figure reveals a
marked independence of C. Thus, the desired goal of converting magnitude-squared [
coherence estimate € to a nearly Gaussian random variable, by means of a
nonlinear transformation that depends only on N, is achievable.

‘ Now, the problem remains to find as simple an analytic transformation as
possible to approximate the solid curves in figures 11, 12, and 13. A great deal of
trial-and-error has resulted in the following candidate. The distorted version of
we adopt is not (2), but rather

Dy = arctanh (gN(e)) , (29)

i where

(1-x)N1n(%)
(x) = + ' 8o = .
Bn) = VX ey W=V @5)

The nonlinear transformatioh in (24) and (25) depends on N as well as x, but is
independent of the unknown parameter C. The leading term of (25) is, of course,
the earlier result. The correction term goes quickly to zero as x—1, and as N in-
creases, as figures 11, 12, and 13 indicated desirable.

Probabilistic Statements
In order to measure the success of transformation (24) and (25), we need to
evaluate the exact cumulative distribution function of random variable D. We
have the exact relation
Prob{Dy < T} = Prob{arc tanh(gN(E))< T}
= Prob{gy(C) < tanh (T)} \
= Prob{C < gl(tani(T))} = P, (gh(tani(T)) ), (26)

where g!, is the inverse function of g, and P, is the cumulative distribution function
of C. The program for evaluation of (26) is given in appendix G.

If we have succeeded in realizing a Gaussian random variable for Dy, then an
approximation to (26) is given by

Prob{Dy< T} % & (T-;ﬂ) .

@n

Bt M AR -
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where we have chosen to use (7), (8), and (9) here also. Therefore, an approximation
to cumulative distribution function P, follows according to

P,(A) = Prob{{ < A}
= Prob{arc tanh(gN(e)) < arc tanh(gy(A))}

= Prob{ Dy < arc tanh(gy(A))}

a0 ( arc tanh(gy(A)) - h) .

o (28)
Furthermore, (28) affords an approximate expression for thé required threshold
value, A, to use for a specified probability value P,; it is

A gl (tanh(y, + 0®XP)))) . (29)

This relation generalizes (15), which applied to the arc tanh (vx ) transformation.
The main drawback to (26) and (29) is that we need the inverse function g,[, to (25).
(This inverse is not needed for (27) or (28).) When the correction term in (25) is zero
(as for N = o), the inverse relation is simply g! (y) = y2; however, no such simple
relation exists for (25) in general, and g,!‘ must be found numerically. It would be
worthwhile to uncover a simpler nonlinearity than (25) that still converts &toa
nearly Gaussian random variable, and, at the same time, is easily invertible;
whether this is possible is unknown.

Plots

The final measure of success of transformation (24) and (25) is afforded by
figures 14-18 for the cumulative distribution function of Dy, for N = 8, 16, 32, 64,
and 128, respectively. The discrepancy from a Gaussian random variable
(dotted lines) is far less than for the corresponding cases in figures 6-10 for the
arc tanh (VX ) nonlinearity. Even for as low a value as N = 8, a fair approximation
is given for C = .01,

Summary

Two nonlinear transformations have been presented that convert magnitude-
squared coherence estimate C to nearly a Gaussian random variable. They afford
quick approximate evaluation of the cumulative distribution function of ¢ and can
be used for arbitrarily large N; see (14) and (28). They also allow for rapid
calculation of confidence limits since these relations can be inverted to find the
threshold required for a specified cumulative distribution function value; see (15)
and (29). A drawback of the latter more-accurate result is that no simple analytical
inversion to nonlinear transformation (25) exists; however, since computer aid
would likely be used to evaluate the expressions given here, inversion of (25) is easily
achieved. A simple recursive scheme was employed by the author; see appendix G.
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Appendix A
Momentsof DforC = 0

Exact Results

For C = 0, the probability density function in (1), of magnitude-squared
coherence estimate C, simplifies to

PO =(N-D0-xf" Jor ocx<i and N2 @a-n

The m-th moment (3) is then given by

| m |
P (N,9) = Joclx p (0 arc tanh 5) (A-2)

Let

x = tanh' ), dx= dt 2 swh{t)/cosh’i), (A-3)

to obtain

}*M(N;o 2! dt f‘m—:r%p (fo;h‘({‘)) t
- 200 2l ¢

For m = 0, the substitution u = cosh(t) immediately yields unit area. So, let
m 2 | in the following. Integrate by parts with

(A-4)

" nH‘t)
u=’( ,dv=cﬂtho';Em-“—)—~; (A-5)
and obtain
)A,,(N,o) rdt -7———““_ for mz1. (A6)

We now specializetom = 1;letx = e!,dx = xdt, p = 2N-2, and obtain
|

o x' . 2N-4+ p‘(N-,Z
p(Ny0) = 2 fdx T 2 ran-)

0

AR e

(A-7)

= for N23; P2 0=l

TR 6327
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26

where we employed reference S, 3.241 4, and reference 6, 6.1.18. Then using
reference 6, 6.1.47, with the parameters selected to eliminate the first correction

term, we find
_@g—— a3 N - 00,

yN-12§

pno) ~

(A-8)
Asymptotic Expansion to One Term
We were unable to locate a closed-form expression for (A-6) when m> 2. A

recursion relation similar to (A-7) is derivable for m 3 2 and will be presented later.
But, a useful approximation for any m and for large N follows quickly from (A-6):

B g T ) e e

_C;;lm ~ er(— rf‘/)) e to o0 (A-9)

Therefore,
P9~ (£ 12
) P(?—H)

(N-1 * N>
(A-10)

(The reason that (A-10) for m = 1 does not agree precisely with (A-8) is that (A-8) is
exact to order N-3/2 | whereas (A-10) is correct only to order N-'/2 for m = 1. This
shortcoming is alleviated below.)

From (A-10), we can now evaluate the variance of D for C = 0; it is

¢ = )‘x(N,°)‘P'l(~;°) ~ ‘1,;:_,1&- s N— ~. (A-11)

Asymptotic Expansion to Two Terms

Our starting point is (A-6):

m-|
}Am (Ny0) = "‘gd" ;ﬁ?‘@‘ ' (A-12)

Let
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cosh(x) = ef, £ = In coshlx) , x = are cosh(et),

HE
1]
[4 (od_

(A-13)

when we used reference 6, 4.6.38. Then

K )J..(N,O) = m[:dt £ 1o F,M&) eﬂ{, (A-14)

where

) f.lt) = arc cos\\(et),psZN-ﬂ.
e ! (A-15)

flo=

. We are now in a position to employ Watson’s Lemma, reference 7, pp. 102-
‘ 103. We need the expansions of f,(t) and f,(t) about t = 0. Consider

L+t + O) _ 1+t + OK)
af_ yz++zf 1Ol V2t 1+ it +OW)
{
==+ 4t+0W
V2t (H © 2 (A-16)

Also via reference 6, 4.6.21 and 4.1.24,

*F-; o) - |V\ [et-}

: = In [H'E'FOH'Z) +‘V3{' +2€+0P7]
I
i i+t 308 + V2 + St 0]

: =\n[|+m+ 4 +JV2=JC?’=+0H;)]
A{‘ = ﬁg +t +'72Et7‘+0f€) _ %[ﬁ‘F‘Ft*O({*’I‘)]z# éB/Z-FJ-O“)]’

y Vst 4 1% 0K)- shtr a4 Ok 3R o)
! - yzE[1+ Lts O({”')] A1
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Therefore,

8- @ [lv=tt + 0w

(A-18)
and using (A-16)

ROR0 - is =24 +0RY)]

(A-19)

Term-by-term integration of (A-19) in integral (A-14) yields the desired result

P (N0) ~ %ﬁ)%;')—[l + %";%’-3-]

P(?+D a5 No of

~ .
_ 144m
(n- 222 A0
Special cases are

(n,0) ~ f/z I+ VT2 as N 200,
Pl it s s w N

1 I ;
pate)~ 21+ 5] - v NPT an

N I = il i 7 [

=/
T (4- 15w .
~ (l - T)( N- - lm) as N-—o (A-23)

Equation (A-21) agrees precisely with (A-8) when the latter is expanded to two terms
in (N-1)"'. More generally, (A-20) extends (A-10) to two terms in the asymptotic
expansion, and (A-23) generalizes (A-11) to two terms. Comparison of (A-20)-(A-23)
with results of the numerical procedure in appendix B reveals very close agreement.

28
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Third Cumulant of Normalized D for C = 0

In order to determine whether random variable D, for C = 0, is approaching a
Gaussian random variable as N increases, we evaluate the third cumulant of the
normalized random variable

- (A-24)
We have the usual first two cumulants of r:
w0 _ 0 _
AN =0, X =L (A-25)

Then, using (A-20)-(A-23), _
R

PL‘3}‘1P"’2F'3~ 2ﬁ6r-3)=,63l as N-><.
T 4-=y" (A-26)

Since this quantity does not decrease to zero as N increasgs to oo, the nonlinear
distortion D of magnitude-squared coherence estimate C does not approach
Gaussian, at least in the case when C = 0.

Recursion for u(N,0)

From (A-1) and (A-2),

P (8,0) = fo'ex N-X-9 AT (W),

(A-27)
where
A¥) = archnhf), AW = Tf?‘ ' (A-28)
Lett = VX in (A-27) to obtain
Pal0) = fo'dt 20-00- A0 L

Let m 3 1 in the following and integrate by parts withu = A™(t), v = ~(1-t)N-!, to

obtain
() = . o (- 8" A0

(A-30)

TR 6327
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' Now we assume that N 3 3 and develop
i ' N-3 -
2 3
| Paly0) = m { dtlt-£)7(-£)A7H)
! { d 2 y ™=}
= pali-1,0) -m [ ot (- ) €AW, (A1)
, Integrate by parts withu = tA"'"(t), v = ~(1-t2)N- z/[2(N-2)], to obtain
Pl = pN-1,0) - - = ——p (N9 - 2- 9‘(& (-t AT 0. (a-32)
' For m = 1, this lmmedlately reduces to the recursion in (A-7). Furthermore,
for m = 2, the last integral can be evaluated immediately, and we find the con-
venient recursion for the second moment:
1
\ . 2N-4 _
‘ fh(Nﬁ, N ’\(N 0) W for N2 3 }M(ZP) =2 2.
(A-33)

| The starting value for u,(2,0) follows from (A-30) and (A-28):

' Pa(2,0) = ZC*AK) = zf&f.—f'—:r - 2_&%‘,[ f e =2k 2

(A-34)

e

We now assume that m 3 3 and conclude the recursion derivation in (A-32).
Integrate by parts with u = A™ (1), v = -(1-t2)N-2/[2(N-2)], to obtain the final
result

’ 2N-4 .
' ,&,(N,Q) 2N-3 ’\-(N ')°) h” J.N 9}‘.... (M I,O) C'N J QJ ma 3,

' (A-35)
(Equation (A-35) actually holds for m = 2 also; in fact, it reduces to (A-33).)

! ‘ In order to start this recursion, we need to know

e (! -
f‘ )&.(2)0)=M ¢ A ‘9 22—":—'—50&(,"‘:%&9 .

We already know uy(2,0) in (A-34), so keep m 3 3 in the following. Let
' x = (1-t)/(1 + ) and obtain

(A-36)

}&(7.0) = :‘-z l(‘d‘. (—‘m;ﬂ.

Integrate by parts with u = (-In x)™!, v = x/(1 +x), to obtain

(A-37)
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N .
= _mm-1) dx )"‘
(A-38)
Now let x = e"'and get
m-2
(2,0 = ) dtt t
P 3 e+
(A-39)
Use reference 6, 23.2.8 and obtain
m-2
2 -l
0) = m! g m-1) for m=z 3
Pu@9) = ! g T(w-) ' o)
where { is the Riemann zeta function. Thus, from reference 6, 23.2.24 and 23.2.25,
o 1 e
Pol2,0)= S~ pel2i0) =g . (A-41)
The value for u,(2,0) requires knowledge of {(3); values of {(n) for n > 2 are givenin
reference 6, page 811. Thus, we now have all the starting values necessary to use
recursion (A-35) form 2 3.
31/32
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Appendix B
Numerical Evaluation of Moments of D

Our starting point is the top line of (A-4), modified to the case for C # 0. We then
express the hyperbolic functions in terms of exponentials and obtain

pimd- i 15 p(659) € by

——— -

where
E = exp(-24), (B-2)

and p, is given by (1). A program for evaluation of (B-1) is given below. Inputs are
N, C, and M(=m) in the first three lines. This program was used to deduce the

‘ behaviors listed in (7), (8), and (9).
i 1@ N=128

20 C=.5

3@ M=t

4@ S1=0

11 S2=8-S0R(NY+1E - N+1

69 COM N,,M

70 F=(N=-1)#¢1-C+~N

-1 PRINT "N s";N,"{ =";C,"M =";M,51;52
94 S3= FNSCS1)4FNS(8210%. 5

160 S4=9

119 $85=2

1z S6=(S2~-C1H#%, S

120 S$?=2-3

149 FOR 38=1 TO $5-1 STEFP 2

15a S4=S4+4FHS(S1+56#58 )

1¢0 NEXT €8

170 Qe (S3+2#34 %5657 »F

129 PRINT USING "M, 12DE,7D"; &, 35S

196 £3=33+54

200 $4=0

218 SS=i5%2 i
2:ze S€=256#%,5
230 E0TO0 14@
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DEF FNS«(T>

CoM N,C, M

E=EXP(-2#T)

D=1-E

Smi+E

As(DsS)~2

RETURN 3#E#D- S~3#FNP(RX>#T M
FNEND

DEF FNFZ1<(A,B,C,¥%)

FaF4m}

FOR FS=1 TO 100

Fé=F5-1
FasF4#(A+FEI)#(B+FEI*X/((C+FEI*FS)
F=F+F4

IF RBS(F4)<1E-12#ABS(F)> THEN 420
NEXT ¢S

DISP “1060 TERMS RT ";A;B;C;X
PRUSE

RETURN F

FNEND

DEF FHP({X)

caM N,C, M

B=C»X

Pe(1=X3 (N-2)Y (1-B)~{2%#N-1)#FKFZ1{1-H, i1-H,1,B>

RETURN F
FNENMD
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3z@
190
400
410
az¢
430
440
453

460

Appendix C
Program for the Evaluation of (13)

Nelg
OUTPUT @3N ="3N
FLOTTER IS "GRAPHICS"

GRHPHICS

DRATA .01,.0825,.85,.1,.2,.3%,.4,.5,.6,.7,.8,.9,.95,
DIM GC131%) ! GRID LINES

READ G(#)

XKm=]

YmeFNInuphi (G(1SY)
SCALE @.%m,=Yn,¥m
FOR x=0 TQ Xm STEP Xm-10
MOVE X,Ym

DRAW X, -Ym

NEXT X

FOR I=1 TO 1S
Y=FNInuphi (GL1))
MOVE O,Y

DR Xm, Y

NENT 1

PENUP

DRTA .01,.05,.1,.2,.3,.4,,.5,.6,.7,.8,.9,.95,, %%

DIM CC1:13» ' TRUE COHERENCE “YRLUES
RERD C(#)>

FOR I=3 TO 11

C=C(I>

T=(1-C>~2
Pias=sTaile2eC Ny N
S1Qmanm(N=-1>#T2(2*C+  1~G#L+134C202. NI N N+
Sigma=SOR(Sigmad

LINE TYPE 3

FORk Td=0 TO Xm STEP Xm-109
Y=(Td-C~-Bias> "Sigma

FLOT t4,v

NEXT Ta

FENLP

LINE TYPE

FOR Td=@ TO ~m STEF xXn-109
Tc=Td

Y=FNCdfmsc(M,C, T2

PLOT Ta,FNInuphi(y)

IF %:,99 THEN 430

NE-T Td

FENUP

NEXT 1

NEXT &k

END
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479 DEF FNCafmsc(N,C,Ct>

459 O=1-Ct

490 P=C*(Ct

S0 H=1-P

Stie R=Q-H

520 Tnews@ .
530 SaT=]

540 FOR K=1 TQ N-2

550 Told=Tneuw

560 TnewsT

SvVo T (2¥K-1+(N-KI#P) #Tnew=<(K=1>#0#Tu1d)*k-K

580 S=S+T

$90 NEXT K

600 P=Ct#C1=-C) HIAN#S

610 RETURN P

620 FNEND

620 DEF FNInuphi(X)

640 IF (X>=8)> AND (X<=1) THEN €70

650 PRINT "ARGUMENT ";X;"1S DISALLOKWED FOF IR\VERIE FHI FUNCTJION"
(11 STOP

&7e IF (X>9> RND (X<1)> THEN 700

650 P29,99939999999E99»(2#X~1)

€99 GOTO 750

700 P=3.

7ie IF X>.5 THEN P=_ S-(X%-.%>

7?20 P=SAR(-2#LOG(P )

730 PeP-(2.519%17+P*#(,892883+P*,. 01832817 [1¢F*(1.432788+F#(,189269+P+,001308)>>

740 IF X<.5 THEN FP3z-pP

7%0 RETURN P

7€0 FNEND

770 LEF FNTarh(k>

780 S=ENP(Z#X)

790 RETURN (S~-1)-75+1)

809 FNEND

810 DEF FNRrctanhc x>

80 RETUPN .S#LOGC(L1+X)>-¢1=DD
830 FNEND
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The functions Cdfmsc, Invphi, Tanh, and Arctanh have already been listed in

appendix C.

i@ N=3

28 OUTPUT O;"N =" N

30 PLOTTER 1S “GRAFHICS"

40 GRAFHICS

Sa DATA .01,.825,.08%,.1,.2,.3,.94,.9,.6,.7..8,.9..35%, 475,.99
60 DIM GC1:1S) ! GRID LINES
7 RERD G(#)

1] Xm=dq

90 YusFNInuphi(GU1SO)

ioe SCALE O, Xm,=Ym,¥m

110 FOR %= TO Xm STEP N¥m-8
140 MOVE X,Ym

130 DRAH X, =Ym

149 NEXT X

150 FOR I=1 TO 15

160 YaFNInuwphi (Gl

17e MOVE o,v

180 DRAKW Xm,Y

1%a NEXT I

200 PENUF

210  DRTA .01,.95,.1,.2,.3,.4,.5,.5,.7,.8,.9,.95%,.9%
2 DIM CC1:13> ! TRUE COHERENCE VALUE:
230 READ C(#*>

240 FOR I=3 TO 13

2%0 C=CcCI>

2€0 B=(1-Cr2) 7 (2®iN=-12)

2re Mean=FNRrct anhiSQR(C+B)>»
280 Sigma=1-SQR(2#(N-1)1

290 LINE TYPE 3

200 FOR Td=0 TO Xm STEP Xm-t@@
310 TYo(Td-Mean) Sigma

3z PLOT Td,Y

330 NEXT Td

240 PENUP

3%0 LINE TYPE 1

3¢0 FOR Td=0 TO :im STEP Xm-100
37ve Tc=FHTanh(Td: -2

30 YeFHCdfmac N, C, Te

390 PLOT TdFNInvphicy e

400 IF v>,99 THEN 4z0

410 NEXT T4

420 PENUP

430 NEMT 1

440 NEYT K

459 END

B e

Appendix D
Program for the Evaluation of (12)
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! ,
;' Appendix E
| Program for the Evaluation of (16)
i
' The functions Invphi and Tanh have already been listed in appendix C.
. te INPUT P,N,C { PROBABILITY,PIECES, COHEFENCE
! 20 HlphasSOR(C+(1-C*Cr-(2#(N-1)))
{ 30 T2FHInuphi <P SAR(Z*(N-1))
! 48 Bet a=FNTanh(T>
' 1% AR=((AIpha+Beta)/(1+Alpha*Betal>~2
60 PRINT R,P3N;3C
70 END
|
K
!
)
’!
i
!
i
14
'
' - .
i
]
v
"
- 39/40
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Appendix F

Program for the Evaluation of (23)

The functions Cdfmsc, Invphi, and Arctanh have already been listed in appendix

C.

C=.1

N=32

FRINT "C =%3C,"N =" N
B=(1-CHC) (2% (H-1))>
Mean=2FHArctanh(SAR(C+B> >
Sigmas]. SER(Z*(N-1)1
FLOTTER 1S "GRAPHICS"
GRAFHICS

SCALE 0,1,~.5,3.5

GRID .1,.95

PENUFP

LINE TYPE 23

FOR X=0 TO ,995 STEP .00S
‘"=FNArct anh{SAR(X))

PLOT X, Y

NEXT X

PENUP

LINE TYPE 1

FOR X=,002 TO .998 STEP .002
P1=FNCdfmsc (N, C,X)

IF P1<.01 THEN 2%0

IF P1>1-,01 THEN 260
Y=Mean+Sigma#FNInvphy (F1
PLOT X,v

NEXRT X

END

TR 6327
! ORIGINAL NON-LINEARITY
! DESIRED MON-LINERRITY
E:
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The functions Cdfmsc, Invphi, Tanh, and Arctanh have already been listed in

appendix C.

10 H=32

Za QUTFUT @3 "N =" N

0 PLOTTER 13 “"GRAPHICS"

48 GRAPHICS

Se DATA .01,.025,.0%,.1,.2,.3,.4,.5,.6,.7,.8,.9,.95,.975,.99
(1] DIM GC1:1S) I GRID LINES
? RERD G(#)

1] Xm=4

9@ Ym=FNInvphi (GC1S))

160 SCALE O, %m, =Ym,Ym

118 FOR X=0 TO Xm STEP Xm-8

) MOVE X,Ym

i3z DRAW X,=Ym

140 NEXT ¥

150 FOR I=) TO 1%

160 YaFNInvphi (GCI 2D

170 MOVE @,Y

180 DRAW Xm, Y

120 NERXT

260 PENUFP

210 DATA .91,.95,.1,.2,.3,.4,.5,.6,.7,.3,.9,.95,.%3
220 DIM C(tit3 I TRUE COMERENCE YRLUE:
220 RERD Cow)

240 FOR I=1 TO 13

250 C=C(1:

2€0 B¢ 1-C~2) C2%#(H=-1)>)

2ve Mesr=FHArctanh SER:«C+E»)

280 Sigmazl-SARCZ*<N=-11>

290 LINE TYPE 3

300 FOR Td=@ TO xm STEP Xm- 1@

3le ¥e(Td-Mean>-Sigma

32u PLOT T4,V

330 NEXT Td

340 PENUF

3%0 LINE TYPE 1

3¢9 FOR Td=@ TO xm STEP Am- 199

3ve Tc=FNTanh<(Td>

g TezFNInegdTe, 2 U RISTORTION IS gQdN»
390 VaFNCdfmec N,C, Tco

400 FLOT Td,FNInuvphicy:

410 IF v>.99 THEN 430

29 NE:T T1d

4:Q PENUF

449 NEXT 1

450 NE:T ¥

JE0 END

Appendix G
Program for Evaluation of (26)
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470 DEF FNInugCy,N>
' 480 XK1= (Yel,S/7N>~2 :
; 4956  X2=X1+.01
500  F1=SOR(X1)4,S#1=X1>~C1#NI#LOGC S#(N=1)%X11-(Ne23-Y
S10  F2=SOR(K2)+.5#C1=X2)~(I#NI#LOGC . SHCN=1 X2 (H+Z:=¥
) $26  IF ABSC(F1-F2><1E-1@ THEN RETURN %2
; S30  Ts(X1#F2-X2#F1)-(FZ-F1) »
! 540 X1mxX2 !
550  Xx2=7 : ‘
560 FisF2 g
570 GOTO S19 .
FNEND
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